Levothroid

Name: Levothroid

Precautions

Before taking levothyroxine, tell your doctor or pharmacist if you are allergic to it; or if you have any other allergies. This product may contain inactive ingredients, which can cause allergic reactions or other problems. Talk to your pharmacist for more details.Before using this medication, tell your doctor or pharmacist your medical history, especially of: increased thyroid hormones (thyrotoxicosis), decreased adrenal gland function, heart disease (such as coronary artery disease, irregular heartbeat), high blood pressure, diabetes.Before having surgery, tell your doctor or dentist about all the products you use (including prescription drugs, nonprescription drugs, and herbal products).Current information shows that this drug may be used during pregnancy. Tell your doctor if you are pregnant because your dose may need to be adjusted.Levothyroxine passes into breast milk but is unlikely to harm a nursing infant. Consult your doctor before breast-feeding.

Drug interactions

Drug interactions may change how your medications work or increase your risk for serious side effects. This document does not contain all possible drug interactions. Keep a list of all the products you use (including prescription/nonprescription drugs and herbal products) and share it with your doctor and pharmacist. Do not start, stop, or change the dosage of any medicines without your doctor's approval.Some products that may interact with this drug include: androgens/anabolic steroids (e.g., testosterone), antidepressants (e.g., SSRIs such as sertraline, tricyclics such as amitriptyline), beta blockers (e.g., propranolol), corticosteroids (e.g., dexamethasone), cytokines (e.g., interferon alfa, interleukin-2), digoxin, epinephrine, ketamine, theophylline, warfarin, drugs that can decrease thyroid hormone levels (e.g., amiodarone, medications containing iodide/iodine, lithium), drugs affecting liver enzymes that remove levothyroxine from your body (e.g., phenobarbital, rifamycins including rifampin, certain anti-seizure medicines including carbamazepine and phenytoin).High doses of salicylates (e.g., high doses of aspirin) may affect thyroid hormone levels in the blood. However, low-dose aspirin should be continued if prescribed by your doctor for specific medical reasons such as heart attack or stroke prevention (usually at dosages of 81-325 milligrams per day). Ask your doctor or pharmacist for more details.Check the labels on all your medicines (e.g., cough-and-cold products, diet aids) because they may contain ingredients such as decongestants or caffeine that could increase your heart rate or blood pressure. Ask your pharmacist about using those products safely.

Indications

Levothyroxine sodium is used for the following indications

Hypothyroidism

As replacement or supplemental therapy in congenital or acquired hypothyroidism of any etiology, except transient hypothyroidism during the recovery phase of subacute thyroiditis. Specific indications include: primary (thyroidal), secondary (pituitary), and tertiary (hypothalamic) hypothyroidism and subclinical hypothyroidism. Primary hypothyroidism may result from functional deficiency, primary atrophy, partial or total congenital absence of the thyroid gland, or from the effects of surgery, radiation, or drugs, with or without the presence of goiter.

Pituitary TSH Suppression

In the treatment or prevention of various types of euthyroid goiters (see WARNINGS and PRECAUTIONS), including thyroid nodules (see WARNINGS and PRECAUTIONS), subacute or chronic lymphocytic thyroiditis (Hashimoto's thyroiditis), multinodular goiter (see WARNINGS and PRECAUTIONS) and, as an adjunct to surgery and radioiodine therapy in the management of thyrotropin-dependent well-differentiated thyroid cancer.

Overdose

The signs and symptoms of overdosage are those of hyperthyroidism (see PRECAUTIONS and ADVERSE REACTIONS). In addition, confusion and disorientation may occur. Cerebral embolism, shock, coma, and death have been reported. Seizures have occurred in a child ingesting 18 mg of levothy-roxine. Symptoms may not necessarily be evident or may not appear until several days after ingestion of levothyroxine sodium.

Treatment of Overdosage

Levothyroxine sodium should be reduced in dose or temporarily discontinued if signs or symptoms of overdosage occur.

Acute Massive Overdosage

This may be a life-threatening emergency, therefore, symptomatic and supportive therapy should be instituted immediately. If not contraindicated (e. g. , by seizures, coma, or loss of the gag reflex), the stomach should be emptied by emesis or gastric lavage to decrease gastrointestinal absorption. Activated charcoal or cholestyramine may also be used to decrease absorption. Central and peripheral increased sympathetic activity may be treated by administering β-receptor antagonists, e. g. , propranolol, provided there are no medical contraindications to their use. Provide respiratory support as needed;control congestive heart failure and arrhythmia;control fever, hypoglycemia, and fluid loss as necessary. Large doses of antithyroid drugs (e. g. , methimazole or propylthiouracil) followed in one to two hours by large doses of iodine may be given to inhibit synthesis and release of thyroid hormones. Glucocorticoids may be given to inhibit the conversion of T4 to T3. Plasmapheresis, charcoal hemoperfusion and exchange transfusion have been reserved for cases in which continued clinical deterioration occurs despite conventional therapy. Because T4 is highly protein bound, very little drug will be removed by dialysis.

Clinical pharmacology

Thyroid hormone synthesis and secretion is regulated by the hypothalamic-pituitary-thyroid axis. Thyrotropin-releasing hormone (TRH) released from the hypothalamus stimulates secretion of thyrotropin-stimulating hormone, TSH, from the anterior pituitary. TSH, in turn, is the physiologic stimulus for the synthesis and secretion of thyroid hormones, L-thyroxine (T4) and L-triiodothyronine (T3), by the thyroid gland. Circulating serum T3 and T4 levels exert a feedback effect on both TRH and TSH secretion. When serum T3 and T4 levels increase, TRH and TSH secretion decrease. When thyroid hormone levels decrease, TRH and TSH secretion increase.

The mechanisms by which thyroid hormones exert their physiologic actions are not completely understood, but it is thought that their principal effects are exerted through control of DNA transcription and protein synthesis. T3 and T4 diffuse into the cell nucleus and bind to thyroid receptor proteins attached to DNA. This hormone nuclear receptor complex activates gene transcription and synthesis of messenger RNA and cytoplasmic proteins. Thyroid hormones regulate multiple metabolic processes and play an essential role in normal growth and development, and normal maturation of the central nervous system and bone. The metabolic actions of thyroid hormones include augmentation of cellular respiration and thermogenesis, as well as metabolism of proteins, carbohydrates and lipids. The protein anabolic effects of thyroid hormones are essential to normal growth and development. The physiological actions of thyroid hormones are produced predominantly by T3, the majority of which (approximately 80%) is derived from T4 by deio-dination in peripheral tissues.

Levothyroxine, at doses individualized according to patient response, is effective as replacement or supplemental therapy in hypothyroidism of any etiology, except transient hypothyroidism during the recovery phase of subacute thyroiditis.

Levothyroxine is also effective in the suppression of pituitary TSH secretion in the treatment or prevention of various types of euthyroid goiters, including thyroid nodules, Hashimoto's thyroiditis, multinodular goiter and, as adjunctive therapy in the management of thyrotropin-dependent well-differentiated thyroid cancer (see INDICATIONS AND USAGE, PRECAUTIONS, DOSAGE AND ADMINISTRATION).

Pharmacokinetics

Absorption

Absorption of orally administered T4 from the gastrointestinal (GI) tract ranges from 40% to 80%. The majority of the levothyroxine dose is absorbed from the jejunum and upper ileum. The relative bioavailability of LEVOTHROID® (levothyroxine sodium) tablets, compared to an equal nominal dose of oral levothy-roxine sodium solution, is approximately 94%. T4 absorption is increased by fasting, and decreased in malabsorption syndromes and by certain foods such as soybean infant formula. Dietary fiber decreases bioavailability of T4. Absorption may also decrease with age. In addition, many drugs and foods affect T4 absorption (see PRECAUTIONS, DRUG INTERACTIONS and Drug-Food Interactions).

Distribution

Circulating thyroid hormones are greater than 99% bound to plasma proteins, including thyroxine-binding globulin (TBG), thyroxine-binding prealbumin (TBPA), and albumin (TBA), whose capacities and affinities vary for each hormone. The higher affinity of both TBG and TBPA for T4 partially explains the higher serum levels, slower metabolic clearance, and longer half-life of T4 compared to T3. Protein-bound thyroid hormones exist in reverse equilibrium with small amounts of free hormone. Only unbound hormone is metabolically active. Many drugs and physiologic conditions affect the binding of thyroid hormones to serum proteins (see PRECAUTIONS, DRUG INTERACTIONS and Drug-Laboratory Test Interactions). Thyroid hormones do not readily cross the placental barrier (see PRECAUTIONS, Pregnancy).

Metabolism

T4 is slowly eliminated (see Table 1). The major pathway of thyroid hormone metabolism is through sequential deiodination. Approximately eighty-percent of circulating T3 is derived from peripheral T4 by monodeiodination. The liver is the major site of degradation for both T4 and T3, with T4 deiodination also occurring at a number of additional sites, including the kidney and other tissues. Approximately 80% of the daily dose of T4 is deiodi-nated to yield equal amounts of T3 and reverse T3 (rT3). T3 and rT3 are further deiodinated to diiodothyronine. Thyroid hormones are also metabolized via conjugation with glucuronides and sulfates and excreted directly into the bile and gut where they undergo enterohepatic recirculation.

Elimination

Thyroid hormones are primarily eliminated by the kidneys. A portion of the conjugated hormone reaches the colon unchanged and is eliminated in the feces. Approximately 20% of T4 is eliminated in the stool. Urinary excretion of T4 decreases with age.

Table 1:Pharmacokinetic Parameters of Thyroid Hormones in Euthyroid Patients

Hormone Ratio in Thyroglobulin Biologic
Potency

(days)
Protein
Binding (%)2
Levothyroxine (T4) 10 - 20 1 6-71 99.96
Liothyronine (T3) 1 4 ≤ 2 99.5
13 to 4 days in hyperthyroidism, 9 to 10 days in hypothyroidism;
2 Includes TBG, TBPA, and TBA

Levothroid Food Interactions

Medicines can interact with certain foods. In some cases, this may be harmful and your doctor may advise you to avoid certain foods. In the case of levothyroxine there are no specific foods that you must exclude from your diet when receiving levothyroxine.

Inform MD

Before taking levothyroxine tell your doctor:

  • if you are allergic to levothyroxine or any foods or medicines
  • if you are pregnant or intend to become pregnant, or if you are breastfeeding
  • if you have heart disease, diabetes, clotting disorders, or adrenal and pituitary gland problems. Your dose of medications used to control these other conditions may need to be adjusted while you are taking levothyroxine. If you have diabetes, monitor your blood and/or urinary glucose levels as directed by your doctor and tell your doctor right away if there are any changes. If you are taking anticoagulants (blood thinners), your clotting status should be checked frequently.

Tell your doctor about all the medicines you take including prescription and non-prescription medicines, vitamins, and herbal supplements.

Levothroid and Pregnancy

Tell your doctor if you are pregnant or plan to become pregnant. Studies in women taking levothyroxine during pregnancy have shown it is safe for use during pregnancy. It does not appear to cause harm to the unborn baby. In fact, it is important to treat hypothyroidism (underactive thyroid) during pregnancy, as undertreatment can be dangerous. Pregnant women often require higher doses of levothyroxine.

Levothroid Dosage

Dosing of levothyroxine must be individualized. Your doctor will determine the best levothyroxine dose for you, which will likely be carefully and slowly adjusted. Regular blood tests will be required to monitor your progress. Follow the directions on your prescription label carefully. Do not take more or less than prescribed. It may take several weeks before you begin to notice a change in your symptoms. Do not stop taking levothyroxine without talking to your doctor.

What should i avoid while taking levothyroxine (levothroid, levoxyl, synthroid, tirosint, unithroid)?

Certain medicines can make levothyroxine less effective if taken at the same time. If you use any of the following drugs, avoid taking them within 4 hours before or 4 hours after you take levothyroxine:

  • calcium carbonate (Caltrate, Citracal, Oystercal, and others);
  • ferrous sulfate iron supplement;
  • sucralfate (Carafate);
  • sodium polystyrene sulfonate (Kayexalate, Kionex, and others);
  • antacids that contain aluminum or magnesium (such as Acid Gone, Aldroxicon, Alternagel, Di-Gel, Gaviscon, Gelusil, Genaton, Maalox, Maldroxal, Milk of Magnesia, Mintox, Mylagen, Mylanta, Pepcid Complete, Rolaids, Rulox); or
  • cholesterol-lowering drugs cholestyramine (Questran) and colestipol (Colestid).

Do not change brands or change to a generic levothyroxine drug product without first asking your doctor. Different brands of levothyroxine may not work the same. If you get a prescription refill and your new pills look different, talk with your pharmacist or doctor.

Avoid the following food products, which can make your body absorb less levothyroxine: infant soy formula, cotton seed meal, walnuts, and high-fiber foods.

Where can i get more information?

Your pharmacist can provide more information about levothyroxine.

Remember, keep this and all other medicines out of the reach of children, never share your medicines with others, and use this medication only for the indication prescribed.

Every effort has been made to ensure that the information provided by Cerner Multum, Inc. ('Multum') is accurate, up-to-date, and complete, but no guarantee is made to that effect. Drug information contained herein may be time sensitive. Multum information has been compiled for use by healthcare practitioners and consumers in the United States and therefore Multum does not warrant that uses outside of the United States are appropriate, unless specifically indicated otherwise. Multum's drug information does not endorse drugs, diagnose patients or recommend therapy. Multum's drug information is an informational resource designed to assist licensed healthcare practitioners in caring for their patients and/or to serve consumers viewing this service as a supplement to, and not a substitute for, the expertise, skill, knowledge and judgment of healthcare practitioners. The absence of a warning for a given drug or drug combination in no way should be construed to indicate that the drug or drug combination is safe, effective or appropriate for any given patient. Multum does not assume any responsibility for any aspect of healthcare administered with the aid of information Multum provides. The information contained herein is not intended to cover all possible uses, directions, precautions, warnings, drug interactions, allergic reactions, or adverse effects. If you have questions about the drugs you are taking, check with your doctor, nurse or pharmacist.

Copyright 1996-2013 Cerner Multum, Inc. Version: 9.01. Revision date: 10/31/2012.

Your use of the content provided in this service indicates that you have read,understood and agree to the End-User License Agreement,which can be accessed by clicking on this link.

Proper Use of levothyroxine

This section provides information on the proper use of a number of products that contain levothyroxine. It may not be specific to Levothroid. Please read with care.

This medicine will need to be taken for the rest of your life or your child's life. Do not stop taking this medicine or change your dose without first checking with your doctor. It may take several weeks before you start to notice that your symptoms are better.

It is best to take this medicine on an empty stomach. Take it with a full glass of water at least 30 minutes to 1 hour before eating breakfast.

Swallow the capsule whole. Do not cut or crush it. Also, if you are taking multiple strengths of this medicine, remove the capsules from the blisters in advance to help you identify the strength of each capsule.

For infants and children who cannot swallow the tablet form, the tablet can be crushed and mixed with a small amount of water (5 to 10 milliliters [mL] or 1 to 2 teaspoonfuls). You may use a spoon or dropper to give the mixture. Use the mixture right away and do not store it to use later.

If you are using the oral liquid:

  • This medicine should come with patient instructions. Read and follow the instructions carefully. Ask your doctor if you have any questions.
  • This medicine may be mixed with water or be given directly into the mouth.
  • If mixed with water, squeeze the contents of 1 single unit-dose ampule into a glass or cup containing water. Stir and drink it immediately. Add some water to the glass or cup and drink the water. This will help get all of the medicine out of the glass or cup. Do not mix this medicine with any other liquid except water. Do not store the mixture for later use.
  • If taken without water, squeeze the medicine directly into the mouth or into a spoon and swallow it immediately.

This medicine should be taken at least 4 hours before or 4 hours after these medicines: antacids (Maalox®, Mylanta®, Tums®), calcium supplements, stomach medicines (including lansoprazole, omeprazole, pantoprazole, Aciphex®, Dexilant®, Nexium®, Prevacid®, Prilosec®), cholestyramine (Prevalite®, Questran®), colesevelam (Welchol®), colestipol (Colestid®), iron supplements, Kayexalate®, orlistat (Alli®, Xenical®), simethicone (Gas-X®, Mylicon®), and sucralfate (Carafate®).

Cotton seed meal, dietary fiber, soybean flour (infant formula), or walnuts may affect the absorption of this medicine from your body. You may have to take this medicine at a different time of day from when you eat these foods. Talk with your doctor more about this if you have concerns.

Do not eat grapefruit or drink grapefruit juice while you are using this medicine.

Dosing

The dose of this medicine will be different for different patients. Follow your doctor's orders or the directions on the label. The following information includes only the average doses of this medicine. If your dose is different, do not change it unless your doctor tells you to do so.

The amount of medicine that you take depends on the strength of the medicine. Also, the number of doses you take each day, the time allowed between doses, and the length of time you take the medicine depend on the medical problem for which you are using the medicine.

  • For oral dosage form (capsules):
    • For hypothyroidism:
      • Adults and children older than 12 years of age (growth and puberty complete)—Dose is based on body weight and must be determined by your doctor. The dose is usually 1.7 microgram (mcg) per kilogram (kg) of body weight per day but may be less in older adults.
      • Children older than 12 years of age (growth and puberty incomplete)—Dose is based on body weight and must be determined by your doctor. The dose is usually 2 to 3 mcg per kg of body weight per day.
      • Children 6 to 12 years of age—Dose is based on body weight and must be determined by your doctor. The dose is usually 4 to 5 mcg per kg of body weight per day.
      • Children younger than 6 years of age—Use is not recommended as your child might not be able to swallow the capsules.
    • For thyroid cancer:
      • Adults—Dose is based on body weight and must be determined by your doctor. The dose is usually more than 2 microgram (mcg) per kilogram (kg) of body weight per day.
      • Children—Use and dose must be determined by your doctor.
  • For oral dosage form (solution):
    • For hypothyroidism:
      • Adults and children older than 12 years of age (growth and puberty complete)—Dose is based on body weight and must be determined by your doctor. The starting dose is usually 1.7 microgram (mcg) per kilogram (kg) of body weight per day. Your doctor may adjust your dose as needed.
      • Children older than 12 years of age (growth and puberty incomplete)—Dose is based on body weight and must be determined by your doctor. The dose is usually 2 to 3 mcg per kg of body weight per day.
      • Children 6 to 12 years of age—Dose is based on body weight and must be determined by your doctor. The dose is usually 4 to 5 mcg per kg of body weight per day.
      • Children 1 to 5 years of age—Dose is based on body weight and must be determined by your doctor. The dose is usually 5 to 6 mcg per kg of body weight per day.
      • Children 6 to 12 months of age—Dose is based on body weight and must be determined by your doctor. The dose is usually 6 to 8 mcg per kg of body weight per day.
      • Children 3 to 6 months of age—Dose is based on body weight and must be determined by your doctor. The dose is usually 8 to 10 mcg per kg of body weight per day.
      • Children 0 to 3 months of age—Dose is based on body weight and must be determined by your doctor. The dose is usually 10 to 15 mcg per kg of body weight per day.
    • For thyroid cancer:
      • Adults—Dose is based on body weight and must be determined by your doctor. The dose is usually more than 2 microgram (mcg) per kilogram (kg) of body weight per day.
      • Children—Use and dose must be determined by your doctor.
  • For oral dosage form (tablet):
    • For hypothyroidism:
      • Adults and children older than 12 years of age (growth and puberty complete)—Dose is based on body weight and must be determined by your doctor. The dose is usually 1.6 microgram (mcg) per kilogram (kg) of body weight per day but may be less in older adults.
      • Children older than 12 years of age (growth and puberty incomplete)—Dose is based on body weight and must be determined by your doctor. The dose is usually 2 to 3 mcg per kg of body weight per day.
      • Children 6 to 12 years of age—Dose is based on body weight and must be determined by your doctor. The dose is usually 4 to 5 mcg per kg of body weight per day.
      • Children 1 to 5 years of age—Dose is based on body weight and must be determined by your doctor. The dose is usually 5 to 6 mcg per kg of body weight per day.
      • Children 6 to 12 months of age—Dose is based on body weight and must be determined by your doctor. The dose is usually 6 to 8 mcg per kg of body weight per day.
      • Children 3 to 6 months of age—Dose is based on body weight and must be determined by your doctor. The dose is usually 8 to 10 mcg per kg of body weight per day.
      • Children 0 to 3 months of age—Dose is based on body weight and must be determined by your doctor. The dose is usually 10 to 15 mcg per kg of body weight per day.

Missed Dose

If you miss a dose of this medicine, take it as soon as possible. However, if it is almost time for your next dose, skip the missed dose and go back to your regular dosing schedule. Do not double doses.

Storage

Keep out of the reach of children.

Do not keep outdated medicine or medicine no longer needed.

Ask your healthcare professional how you should dispose of any medicine you do not use.

Store the medicine in a closed container at room temperature, away from heat, moisture, and direct light. Keep from freezing.

Use the oral liquid within 15 days after opening the pouch. Keep the ampules in the pouch until you are ready to use them.

Levothroid - Clinical Pharmacology

Thyroid hormone synthesis and secretion is regulated by the hypothalamic-pituitary-thyroid axis. Thyrotropin-releasing hormone (TRH) released from the hypothalamus stimulates secretion of thyrotropin-stimulating hormone, TSH, from the anterior pituitary. TSH, in turn, is the physiologic stimulus for the synthesis and secretion of thyroid hormones, L-thyroxine (T4) and L-triiodothyronine (T3), by the thyroid gland. Circulating serum T3 and T4 levels exert a feedback effect on both TRH and TSH secretion. When serum T3 and T4 levels increase, TRH and TSH secretion decrease. When thyroid hormone levels decrease, TRH and TSH secretion increase.

The mechanisms by which thyroid hormones exert their physiologic actions are not completely understood, but it is thought that their principal effects are exerted through control of DNA transcription and protein synthesis. T3 and T4 diffuse into the cell nucleus and bind to thyroid receptor proteins attached to DNA. This hormone nuclear receptor complex activates gene transcription and synthesis of messenger RNA and cytoplasmic proteins.

Thyroid hormones regulate multiple metabolic processes and play an essential role in normal growth and development, and normal maturation of the central nervous system and bone. The metabolic actions of thyroid hormones include augmentation of cellular respiration and thermogenesis, as well as metabolism of proteins, carbohydrates and lipids. The protein anabolic effects of thyroid hormones are essential to normal growth and development.

The physiological actions of thyroid hormones are produced predominantly by T3, the majority of which (approximately 80%) is derived from T4 by deiodination in peripheral tissues.

Levothyroxine, at doses individualized according to patient response, is effective as replacement or supplemental therapy in hypothyroidism of any etiology, except transient hypothyroidism during the recovery phase of subacute thyroiditis.

Levothyroxine is also effective in the suppression of pituitary TSH secretion in the treatment or prevention of various types of euthyroid goiters, including thyroid nodules, Hashimoto's thyroiditis, multinodular goiter and, as adjunctive therapy in the management of thyrotropin-dependent well-differentiated thyroid cancer (see INDICATIONS AND USAGE, PRECAUTIONS, DOSAGE AND ADMINISTRATION).

PHARMACOKINETICS

Absorption

Absorption of orally administered T4 from the gastrointestinal (GI) tract ranges from 40% to 80%. The majority of the levothyroxine dose is absorbed from the jejunum and upper ileum. The relative bioavailability of Levothroid® tablets, compared to an equal nominal dose of oral levothyroxine sodium solution, is approximately 94%. T4 absorption is increased by fasting, and decreased in malabsorption syndromes and by certain foods such as soybean infant formula. Dietary fiber decreases bioavailability of T4. Absorption may also decrease with age. In addition, many drugs and foods affect T4 absorption (see PRECAUTIONS, Drug Interactions and Drug-Food Interactions).

Distribution

Circulating thyroid hormones are greater than 99% bound to plasma proteins, including thyroxine-binding globulin (TBG), thyroxine-binding prealbumin (TBPA), and albumin (TBA), whose capacities and affinities vary for each hormone. The higher affinity of both TBG and TBPA for T4 partially explains the higher serum levels, slower metabolic clearance, and longer half-life of T4 compared to T3. Protein-bound thyroid hormones exist in reverse equilibrium with small amounts of free hormone. Only unbound hormone is metabolically active. Many drugs and physiologic conditions affect the binding of thyroid hormones to serum proteins (see PRECAUTIONS, Drug Interactions and Drug-Laboratory Test Interactions). Thyroid hormones do not readily cross the placental barrier (see PRECAUTIONS, Pregnancy).

Metabolism

T4 is slowly eliminated (see Table 1). The major pathway of thyroid hormone metabolism is through sequential deiodination. Approximately eighty-percent of circulating T3 is derived from peripheral T4 by monodeiodination. The liver is the major site of degradation for both T4 and T3, with T4 deiodination also occurring at a number of additional sites, including the kidney and other tissues. Approximately 80% of the daily dose of T4 is deiodinated to yield equal amounts of T3 and reverse T3 (rT3). T3 and rT3 are further deiodinated to diiodothyronine. Thyroid hormones are also metabolized via conjugation with glucuronides and sulfates and excreted directly into the bile and gut where they undergo enterohepatic recirculation.

Elimination

Thyroid hormones are primarily eliminated by the kidneys. A portion of the conjugated hormone reaches the colon unchanged and is eliminated in the feces. Approximately 20% of T4 is eliminated in the stool. Urinary excretion of T4 decreases with age.

Table 1: Pharmacokinetic Parameters of Thyroid Hormones in Euthyroid Patients
Hormone Ratio in Thyroglobulin Biologic Potency t1/2 (days) Protein Binding (%)*
* Includes TBG, TBPA, and TBA † 3 to 4 days in hyperthyroidism, 9 to 10 days in hypothyroidism;
Levothyroxine (T4)
Liothyronine (T3)
10 - 20
1
1
4
6-7†
≤ 2
99.96
99.5

Precautions

General

Levothyroxine has a narrow therapeutic index. Regardless of the indication for use, careful dosage titration is necessary to avoid the consequences of over- or under-treatment. These consequences include, among others, effects on growth and development, cardiovascular function, bone metabolism, reproductive function, cognitive function, emotional state, gastrointestinal function, and on glucose and lipid metabolism. Many drugs interact with levothyroxine sodium, necessitating adjustments in dosing to maintain therapeutic response (see Drug Interactions).

Effects on bone mineral density

In women, long-term levothyroxine sodium therapy has been associated with increased bone resorption, thereby decreasing bone mineral density, especially in post-menopausal women on greater than replacement doses or in women who are receiving suppressive doses of levothyroxine sodium. The increased bone resorption may be associated with increased serum levels and urinary excretion of calcium and phosphorous, elevations in bone alkaline phosphatase and suppressed serum parathyroid hormone levels. Therefore, it is recommended that patients receiving levothyroxine sodium be given the minimum dose necessary to achieve the desired clinical and biochemical response.

Patients with underlying cardiovascular disease

Exercise caution when administering levothyroxine to patients with cardiovascular disorders and to the elderly in whom there is an increased risk of occult cardiac disease. In these patients, levothyroxine therapy should be initiated at lower doses than those recommended in younger individuals or in patients without cardiac disease (see WARNINGS; PRECAUTIONS, Geriatric Use; and DOSAGE AND ADMINISTRATION). If cardiac symptoms develop or worsen, the levothyroxine dose should be reduced or withheld for one week and then cautiously restarted at a lower dose. Overtreatment with levothyroxine sodium may have adverse cardiovascular effects such as an increase in heart rate, cardiac wall thickness, and cardiac contractility and may precipitate angina or arrhythmias. Patients with coronary artery disease who are receiving levothyroxine therapy should be monitored closely during surgical procedures, since the possibility of precipitating cardiac arrhythmias may be greater in those treated with levothyroxine. Concomitant administration of levothyroxine and sympathomimetic agents to patients with coronary artery disease may precipitate coronary insufficiency.

Patients with nontoxic diffuse goiter or nodular thyroid disease

Exercise caution when administering levothyroxine to patients with nontoxic diffuse goiter or nodular thyroid disease in order to prevent precipitation of thyrotoxicosis (see WARNINGS). If the serum TSH is already suppressed, levothyroxine sodium should not be administered (see CONTRAINDICATIONS).

Associated endocrine disorders

Hypothalamic/pituitary hormone deficiencies

In patients with secondary or tertiary hypothyroidism, additional hypothalamic/pituitary hormone deficiencies should be considered, and, if diagnosed, treated (see PRECAUTIONS, Autoimmune polyglandular syndrome for adrenal insufficiency).

Autoimmune polyglandular syndrome

Occasionally, chronic autoimmune thyroiditis may occur in association with other autoimmune disorders such as adrenal insufficiency, pernicious anemia, and insulin-dependent diabetes mellitus. Patients with concomitant adrenal insufficiency should be treated with replacement glucocorticoids prior to initiation of treatment with levothyroxine sodium. Failure to do so may precipitate an acute adrenal crisis when thyroid hormone therapy is initiated, due to increased metabolic clearance of glucocorticoids by thyroid hormone. Patients with diabetes mellitus may require upward adjustments of their antidiabetic therapeutic regimens when treated with levothyroxine (see PRECAUTIONS, Drug Interactions).

Other associated medical conditions

Infants with congenital hypothyroidism appear to be at increased risk for other congenital anomalies, with cardiovascular anomalies (pulmonary stenosis, atrial septal defect, and ventricular septal defect) being the most common association.

Information for Patients

Patients should be informed of the following information to aid in the safe and effective use of Levothroid®:

  1. Notify your physician if you are allergic to any foods or medicines, are pregnant or intend to become pregnant, are breast-feeding or are taking any other medications, including prescription and over-the-counter preparations.
  2. Notify your physician of any other medical conditions you may have, particularly heart disease, diabetes, clotting disorders, and adrenal or pituitary gland problems. Your dose of medications used to control these other conditions may need to be adjusted while you are taking Levothroid®. If you have diabetes, monitor your blood and/or urinary glucose levels as directed by your physician and immediately report any changes to your physician. If you are taking anticoagulants (blood thinners), your clotting status should be checked frequently.
  3. Use Levothroid® only as prescribed by your physician. Do not discontinue or change the amount you take or how often you take it, unless directed to do so by your physician.
  4. The levothyroxine in Levothroid® is intended to replace a hormone that is normally produced by your thyroid gland. Generally, replacement therapy is to be taken for life, except in cases of transient hypothyroidism, which is usually associated with an inflammation of the thyroid gland (thyroiditis).
  5. Take Levothroid® as a single dose, preferably on an empty stomach, one-half to one hour before breakfast. Levothyroxine absorption is increased on an empty stomach.
  6. It may take several weeks before you notice an improvement in your symptoms.
  7. Notify your physician if you experience any of the following symptoms: rapid or irregular heartbeat, chest pain, shortness of breath, leg cramps, headache, nervousness, irritability, sleeplessness, tremors, change in appetite, weight gain or loss, vomiting, diarrhea, excessive sweating, heat intolerance, fever, changes in menstrual periods, hives or skin rash, or any other unusual medical event.
  8. Notify your physician if you become pregnant while taking Levothroid®. It is likely that your dose of Levothroid® will need to be increased while you are pregnant.
  9. Notify your physician or dentist that you are taking Levothroid® prior to any surgery.
  10. Partial hair loss may occur rarely during the first few months of Levothroid® therapy, but this is usually temporary.
  11. Levothroid® should not be used as a primary or adjunctive therapy in a weight control program.
  12. Keep Levothroid® out of the reach of children. Store Levothroid® away from heat, moisture, and light.
  13. Agents such as iron and calcium supplements and antacids can decrease the absorption of levothyroxine sodium tablets. Therefore, levothyroxine sodium tablets should not be administered within 4 hrs of these agents.

Laboratory Tests

General

The diagnosis of hypothyroidism is confirmed by measuring TSH levels using a sensitive assay (second generation assay sensitivity ≤ 0.1 mIU/L or third generation assay sensitivity ≤ 0.01 mIU/L) and measurement of free-T4.

The adequacy of therapy is determined by periodic assessment of appropriate laboratory tests and clinical evaluation. The choice of laboratory tests depends on various factors including the etiology of the underlying thyroid disease, the presence of concomitant medical conditions, including pregnancy, and the use of concomitant medications (see PRECAUTIONS, Drug Interactions and Drug-Laboratory Test Interactions). Persistent clinical and laboratory evidence of hypothyroidism despite an apparent adequate replacement dose of Levothroid® may be evidence of inadequate absorption, poor compliance, drug interactions, or decreased T4 potency of the drug product.

Adults

In adult patients with primary (thyroidal) hypothyroidism, serum TSH levels (using a sensitive assay) alone may be used to monitor therapy. The frequency of TSH monitoring during levothyroxine dose titration depends on the clinical situation but it is generally recommended at 6-8 week intervals until normalization. For patients who have recently initiated levothyroxine therapy and whose serum TSH has normalized or in patients who have had their dosage of levothyroxine changed, the serum TSH concentration should be measured after 8-12 weeks. When the optimum replacement dose has been attained, clinical (physical examination) and biochemical monitoring may be performed every 6-12 months, depending on the clinical situation, and whenever there is a change in the patient's status. It is recommended that a physical examination and a serum TSH measurement be performed at least annually in patients receiving Levothroid® (see WARNINGS, PRECAUTIONS, and DOSAGE AND ADMINISTRATION).

Pediatrics

In patients with congenital hypothyroidism, the adequacy of replacement therapy should be assessed by measuring both serum TSH (using a sensitive assay) and total- or free-T4. During the first three years of life, the serum total- or free-T4 should be maintained at all times in the upper half of the normal range. While the aim of therapy is to also normalize the serum TSH level, this is not always possible in a small percentage of patients, particularly in the first few months of therapy. TSH may not normalize due to a resetting of the pituitary-thyroid feedback threshold as a result of in utero hypothyroidism. Failure of the serum T4 to increase into the upper half of the normal range within 2 weeks of initiation of Levothroid® therapy and/or of the serum TSH to decrease below 20mU/L within 4 weeks should alert the physician to the possibility that the child is not receiving adequate therapy. Careful inquiry should then be made regarding compliance, dose of medication administered, and method of administration prior to raising the dose of Levothroid®.

The recommended frequency of monitoring of TSH and total- or free-T4 in children is as follows: at 2 and 4 weeks after the initiation of treatment; every 1-2 months during the first year of life; every 2-3 months between 1 and 3 years of age; and every 3 to 12 months thereafter until growth is completed. More frequent intervals of monitoring may be necessary if poor compliance is suspected or abnormal values are obtained. It is recommended that TSH and T4 levels, and a physical examination, if indicated, be performed 2 weeks after any change in Levothroid® dosage. Routine clinical examination, including assessment of mental and physical growth and development, and bone maturation, should be performed at regular intervals (see PRECAUTIONS, Pediatric Use and DOSAGE AND ADMINISTRATION).

Secondary (pituitary) and tertiary (hypothalamic) hypothyroidism

Adequacy of therapy should be assessed by measuring serum free-T4 levels, which should be maintained in the upper half of the normal range in these patients.

Drug Interactions

Many drugs affect thyroid hormone pharmacokinetics and metabolism (e.g., absorption, synthesis, secretion, catabolism, protein binding, and target tissue response) and may alter the therapeutic response to Levothroid®. In addition, thyroid hormones and thyroid status have varied effects on the pharmacokinetics and actions of other drugs. A listing of drug-thyroidal axis interactions is contained in Table 2.

The list of drug-thyroidal axis interactions in Table 2 may not be comprehensive due to the introduction of new drugs that interact with the thyroidal axis or the discovery of previously unknown interactions. The prescriber should be aware of this fact and should consult appropriate reference sources (e.g., package inserts of newly approved drugs, medical literature) for additional information if a drug-drug interaction with levothyroxine is suspected.

Table 2: Drug-Thyroidal Axis Interactions
Drug or Drug Class Effect
Drugs that may reduce TSH secretion –the reduction is not sustained; therefore, hypothyroidism does not occur
Dopamine / Dopamine Agonists
Glucocorticoids
Octreotide
Use of these agents may result in a transient reduction in TSH secretion when administered at the following doses: Dopamine ( ≥ 1 µg/kg/min); Glucocorticoids (hydrocortisone ≥ 100 mg/day or equivalent); Octreotide ( > 100 µg/day).
Drugs that alter thyroid hormone secretion
Drugs that may decrease thyroid hormone secretion, which may result in hypothyroidism
Aminoglutethimide
Amiodarone
Iodide (including iodine-containing
Radiographic contrast agents)
Lithium
Methimazole
Propylthiouracil (PTU)
Sulfonamides
Tolbutamide
Long-term lithium therapy can result in goiter in up to 50% of patients, and either subclinical or overt hypothyroidism, each in up to 20% of patients. The fetus, neonate, elderly and euthyroid patients with underlying thyroid disease (e.g., Hashimoto's thyroiditis or with Grave's disease previously treated with radioiodine or surgery) are among those individuals who are particularly susceptible to iodine-induced hypothyroidism. Oral cholecystographic agents and amiodarone are slowly excreted, producing more prolonged hypothyroidism than parenterally administered iodinated contrast agents. Long-term aminoglutethimide therapy may minimally decrease T4 and T3 levels and increase TSH, although all values remain within normal limits in most patients.
Drugs that may increase thyroid hormone secretion, which may result in hyperthyroidism
Amiodarone
Iodide (including iodine-containing
Radiographic contrast agents)
Iodide and drugs that contain pharmacological amounts of iodide may cause hyperthyroidism in euthyroid patients with Grave's disease previously treated with antithyroid drugs or in euthyroid patients with thyroid autonomy (e.g., multinodular goiter or hyperfunctioning thyroid adenoma). Hyperthyroidism may develop over several weeks and may persist for several months after therapy discontinuation. Amiodarone may induce hyperthyroidism by causing thyroiditis.
Drugs that may decrease T4 absorption, which may result in hypothyroidism
Antacids
- Aluminum & Magnesium Hydroxides
- Simethicone
Bile Acid Sequestrants
- Cholestyramine
- Colestipol
Calcium Carbonate
Cation Exchange Resins
- Kayexalate
Ferrous Sulfate
Orlistat
Sucralfate
Concurrent use may reduce the efficacy of levothyroxine by binding and delaying or preventing absorption, potentially resulting in hypothyroidism. Calcium carbonate may form an insoluble chelate with levothyroxine, and ferrous sulfate likely forms a ferric-thyroxine complex. Administer levothyroxine at least 4 hours apart from these agents. Patients treated concomitantly with orlistat and levothyroxine should be monitored for changes in thyroid function.
Drugs that may alter T4 and T3 serum transport - but FT4 concentration remains normal; and, therefore, the patient remains euthyroid
Drugs that may increase serum TBG concentration Drugs that may decrease serum TBG concentration
Clofibrate
Estrogen-containing oral contraceptives
Estrogens (oral)
Heroin / Methadone
5-Fluorouracil
Mitotane
Tamoxifen
Androgens / Anabolic Steroids
Asparaginase
Glucocorticoids
Slow-Release Nicotinic Acid
Drugs that may cause protein-binding site displacement
Furosemide ( > 80 mg IV)
Heparin
Hydantoins
Non Steroidal Anti-Inflammatory Drugs
- Fenamates
- Phenylbutazone
Salicylates ( > 2 g/day)
Administration of these agents with levothyroxine results in an initial transient increase in FT4. Continued administration results in a decrease in serum T4 and normal FT4 and TSH concentrations and, therefore, patients are clinically euthyroid. Salicylates inhibit binding of T4 and T3 to TBG and transthyretin. An initial increase in serum FT4 is followed by return of FT4 to normal levels with sustained therapeutic serum salicylate concentrations, although total-T4 levels may decrease by as much as 30%.
Drugs that may alter T4 and T3 metabolism
Drugs that may increase hepatic metabolism, which may result in hypothyroidism
Carbamazepine
Hydantoins
Phenobarbital
Rifampin
Stimulation of hepatic microsomal drug-metabolizing enzyme activity may cause increased hepatic degradation of levothyroxine, resulting in increased levothyroxine requirements. Phenytoin and carbamazepine reduce serum protein binding of levothyroxine, and total- and free-T4 may be reduced by 20% to 40%, but most patients have normal serum TSH levels and are clinically euthyroid.
Drugs that may decrease T4 5'-deiodinase activity
Amiodarone
Beta-adrenergic antagonists
- (e.g., Propranolol > 160 mg/day)
Glucocorticoids
- (e.g., Dexamethasone ≥ 4 mg/day)
Propylthiouracil (PTU)
Administration of these enzyme inhibitors decreases the peripheral conversion of T4 to T3, leading to decreased T3 levels. However, serum T4 levels are usually normal but may occasionally be slightly increased. In patients treated with large doses of propranolol (> 160 mg/day), T3 and T4 levels change slightly, TSH levels remain normal, and patients are clinically euthyroid. It should be noted that actions of particular beta-adrenergic antagonists may be impaired when the hypothyroid patient is converted to the euthyroid state. Short-term administration of large doses of glucocorticoids may decrease serum T3 concentrations by 30% with minimal change in serum T4 levels. However, long-term glucocorticoid therapy may result in slightly decreased T3 and T4 levels due to decreased TBG production (see above).
Miscellaneous
Anticoagulants (oral)
- Coumarin Derivatives
- Indandione Derivatives
Thyroid hormones appear to increase the catabolism of vitamin K-dependent clotting factors, thereby increasing the anticoagulant activity of oral anticoagulants. Concomitant use of these agents impairs the compensatory increases in clotting factor synthesis. Prothrombin time should be carefully monitored in patients taking levothyroxine and oral anticoagulants and the dose of anticoagulant therapy adjusted accordingly.
Antidepressants
- Tricyclics (e.g., Amitriptyline)
- Tetracyclics (e.g., Maprotiline)
- Selective Serotonin Reuptake Inhibitors (SSRIs; e.g., Sertraline)
Concurrent use of tri/tetracyclic antidepressants and levothyroxine may increase the therapeutic and toxic effects of both drugs, possibly due to increased receptor sensitivity to catecholamines. Toxic effects may include increased risk of cardiac arrhythmias and CNS stimulation; onset of action of tricyclics may be accelerated. Administration of sertraline in patients stabilized on levothyroxine may result in increased levothyroxine requirements.
Antidiabetic Agents
- Biguanides
- Meglitinides
- Sulfonylureas
- Thiazolidinediones
- Insulin
Addition of levothyroxine to antidiabetic or insulin therapy may result in increased antidiabetic agent or insulin requirements. Careful monitoring of diabetic control is recommended, especially when thyroid therapy is started, changed, or discontinued.
Cardiac Glycosides Serum digitalis glycoside levels may be reduced in hyperthyroidism or when the hypothyroid patient is converted to the euthyroid state. Therapeutic effect of digitalis glycosides may be reduced.
Cytokines
- Interferon-α
- Interleukin-2
Therapy with interferon-α has been associated with the development of antithyroid microsomal antibodies in 20% of patients and some have transient hypothyroidism, hyperthyroidism, or both. Patients who have antithyroid antibodies before treatment are at higher risk for thyroid dysfunction during treatment. Interleukin-2 has been associated with transient painless thyroiditis in 20% of patients. Interferon-β and -γ have not been reported to cause thyroid dysfunction.
Growth Hormones
- Somatrem
- Somatropin
Excessive use of thyroid hormones with growth hormones may accelerate epiphyseal closure. However, untreated hypothyroidism may interfere with growth response to growth hormone.
Ketamine Concurrent use may produce marked hypertension and tachycardia; cautious administration to patients receiving thyroid hormone therapy is recommended.
Methylxanthine Bronchodilators
- (e.g., Theophylline)
Decreased theophylline clearance may occur in hypothyroid patients; clearance returns to normal when the euthyroid state is achieved.
Radiographic Agents Thyroid hormones may reduce the uptake of 123I, 131I, and 99mTc.
Sympathomimetics Concurrent use may increase the effects of sympathomimetics or thyroid hormone. Thyroid hormones may increase the risk of coronary insufficiency when sympathomimetic agents are administered to patients with coronary artery disease.
Chloral Hydrate
Diazepam
Ethionamide
Lovastatin
Metoclopramide
6-Mercaptopurine
Nitroprusside
Para-aminosalicylate sodium
Perphenazine
Resorcinol (excessive topical use)
Thiazide Diuretics
These agents have been associated with thyroid hormone and / or TSH level alterations by various mechanisms.
Oral anticoagulants

Levothyroxine increases the response to oral anticoagulant therapy. Therefore, a decrease in the dose of anticoagulant may be warranted with correction of the hypothyroid state or when the Levothroid® dose is increased. Prothrombin time should be closely monitored to permit appropriate and timely dosage adjustments (see Table 2).

Digitalis glycosides

The therapeutic effects of digitalis glycosides may be reduced by levothyroxine. Serum digitalis glycoside levels may be decreased when a hypothyroid patient becomes euthyroid, necessitating an increase in the dose of digitalis glycosides (see Table 2).

Drug-Food Interactions

Consumption of certain foods may affect levothyroxine absorption thereby necessitating adjustments in dosing. Soybean flour (infant formula), cotton seed meal, walnuts, and dietary fiber may bind and decrease the absorption of levothyroxine sodium from the GI tract.

Drug-Laboratory Test Interactions

Changes in TBG concentration must be considered when interpreting T4 and T3 values, which necessitates measurement and evaluation of unbound (free) hormone and/or determination of the free-T4 index (FT4I). Pregnancy, infectious hepatitis, estrogens, estrogen-containing oral contraceptives, and acute intermittent porphyria increase TBG concentrations. Decreases in TBG concentrations are observed in nephrosis, severe hypoproteinemia, severe liver disease, acromegaly, and after androgen or corticosteroid therapy (see also Table 2). Familial hyper- or hypo-thyroxine binding globulinemias have been described, with the incidence of TBG deficiency approximating 1 in 9000.

Carcinogenesis, Mutagenesis, and Impairment of Fertility

Animal studies have not been performed to evaluate the carcinogenic potential, mutagenic potential or effects on fertility of levothyroxine. The synthetic T4 in Levothroid® is identical to that produced naturally by the human thyroid gland. Although there has been a reported association between prolonged thyroid hormone therapy and breast cancer, this has not been confirmed. Patients receiving Levothroid® for appropriate clinical indications should be titrated to the lowest effective replacement dose.

Pregnancy

Category A

Studies in women taking levothyroxine sodium during pregnancy have not shown an increased risk of congenital abnormalities. Therefore, the possibility of fetal harm appears remote. Levothroid® should not be discontinued during pregnancy and hypothyroidism diagnosed during pregnancy should be promptly treated.

Hypothyroidism during pregnancy is associated with a higher rate of complications, including spontaneous abortion, pre-eclampsia, stillbirth and premature delivery. Maternal hypothyroidism may have an adverse effect on fetal and childhood growth and development. During pregnancy, serum T4 levels may decrease and serum TSH levels increase to values outside the normal range. Since elevations in serum TSH may occur as early as 4 weeks gestation, pregnant women taking Levothroid® should have their TSH measured during each trimester. An elevated serum TSH level should be corrected by an increase in the dose of Levothroid®. Since postpartum TSH levels are similar to preconception values, the Levothroid® dosage should return to the pre-pregnancy dose immediately after delivery. A serum TSH level should be obtained 6-8 weeks postpartum.

Thyroid hormones cross the placental barrier to some extent as evidenced by levels in cord blood of athyreotic fetuses being approximately one-third maternal levels. Transfer of thyroid hormone from the mother to the fetus, however, may not be adequate to prevent in utero hypothyroidism.

Nursing Mothers

Although thyroid hormones are excreted only minimally in human milk, caution should be exercised when Levothroid® is administered to a nursing woman. However, adequate replacement doses of levothyroxine are generally needed to maintain normal lactation.

Pediatric Use

General

The goal of treatment in pediatric patients with hypothyroidism is to achieve and maintain normal intellectual and physical growth and development.

The initial dose of levothyroxine varies with age and body weight (see DOSAGE AND ADMINISTRATION, Table 3). Dosing adjustments are based on an assessment of the individual patient's clinical and laboratory parameters (see PRECAUTIONS, Laboratory Tests).

In children in whom a diagnosis of permanent hypothyroidism has not been established, it is recommended that levothyroxine administration be discontinued for a 30-day trial period, but only after the child is at least 3 years of age. Serum T4 and TSH levels should then be obtained. If the T4 is low and the TSH high, the diagnosis of permanent hypothyroidism is established, and levothyroxine therapy should be reinstituted. If the T4 and TSH levels are normal, euthyroidism may be assumed and, therefore, the hypothyroidism can be considered to have been transient. In this instance, however, the physician should carefully monitor the child and repeat the thyroid function tests if any signs or symptoms of hypothyroidism develop. In this setting, the clinician should have a high index of suspicion of relapse. If the results of the levothyroxine withdrawal test are inconclusive, careful follow-up and subsequent testing will be necessary.

Since some more severely affected children may become clinically hypothyroid when treatment is discontinued for 30 days, an alternate approach is to reduce the replacement dose of levothyroxine by half during the 30-day trial period. If, after 30 days, the serum TSH is elevated above 20mU/L, the diagnosis of permanent hypothyroidism is confirmed, and full replacement therapy should be resumed. However, if the serum TSH has not risen to greater than 20mU/L, levothyroxine treatment should be discontinued for another 30-day trial period followed by repeat serum T4 and TSH testing.

The presence of concomitant medical conditions should be considered in certain clinical circumstances and, if present, appropriately treated (see PRECAUTIONS).

Congenital Hypothyroidism

(see PRECAUTIONS, Laboratory Tests and DOSAGE AND ADMINISTRATION)

Rapid restoration of normal serum T4 concentrations is essential for preventing the adverse effects of congenital hypothyroidism on intellectual development as well as on overall physical growth and maturation. Therefore, Levothroid® therapy should be initiated immediately upon diagnosis and is generally continued for life.

During the first 2 weeks of Levothroid® therapy, infants should be closely monitored for cardiac overload, arrhythmias, and aspiration from avid suckling.

The patient should be monitored closely to avoid undertreatment or overtreatment. Undertreatment may have deleterious effects on intellectual development and linear growth. Overtreatment has been associated with craniosynostosis in infants, and may adversely affect the tempo of brain maturation and accelerate the bone age with resultant premature closure of the epiphyses and compromised adult stature.

Acquired Hypothyroidism in Pediatric Patients

The patient should be monitored closely to avoid undertreatment and overtreatment. Undertreatment may result in poor school performance due to impaired concentration and slowed mentation and in reduced adult height. Overtreatment may accelerate the bone age and result in premature epiphyseal closure and compromised adult stature.

Treated children may manifest a period of catch-up growth, which may be adequate in some cases to normalize adult height. In children with severe or prolonged hypothyroidism, catch-up growth may not be adequate to normalize adult height.

Geriatric Use

Because of the increased prevalence of cardiovascular disease among the elderly, levothyroxine therapy should not be initiated at the full replacement dose (see WARNINGS, PRECAUTIONS, and DOSAGE AND ADMINISTRATION).

PRINCIPAL DISPLAY PANEL - 50 mcg Tablet Bottle Label

NDC 0456-1321-01

Levothroid®
(levothyroxine sodium tablets, USP)

50 mcg

Rx only

100 Tablets

LOT NO.

EXP.

Rev. 06-11

(web3)